Seeking To Improve On Given Solutions

Jsun Yui Wong

The computer program listed below seeks to improve on the realized solutions of the preceding paper. One notes line 195 and line 211, which are 195 X(4) = INT(X(4)) and
211 X(1) = (-X(4) * X(2)) / X(3), respectively.

0 DEFDBL A-Z
1 DEFINT J, K
2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)
88 FOR JJJJ = -32000 TO 32000

89 RANDOMIZE JJJJ
90 M = -3D+30
111 FOR J44 = 1 TO 4

112 A(J44) = -10 + RND * 20

115 NEXT J44

128 FOR I = 1 TO 10000

129 FOR KKQQ = 1 TO 4
130 X(KKQQ) = A(KKQQ)
131 NEXT KKQQ
139 FOR IPP = 1 TO FIX(1 + RND * 3)
140 B = 1 + FIX(RND * 4)

150 R = (1 – RND * 2) * A(B)
160 X(B) = (A(B) + RND ^ 3 * R)

168 NEXT IPP
195 X(4) = INT(X(4))

198 X(3) = 2 – X(4)

210 IF X(3) = 0 THEN GOTO 1670

211 X(1) = (-X(4) * X(2)) / X(3)
215 REM N(6) = -ABS(X(3) * X(1) + X(4) * X(2))

216 N(7) = -ABS(X(3) * X(1) ^ 2 + X(4) * X(2) ^ 2 – 2 / 3)
217 N(8) = -ABS(X(3) * X(1) ^ 3 + X(4) * X(2) ^ 3)
322 PD1 = N(7) + N(8)

1111 IF PD1 <= M THEN 1670
1452 M = PD1
1454 FOR KLX = 1 TO 4
1455 A(KLX) = X(KLX)

1456 NEXT KLX
1557 GOTO 128
1670 NEXT I

1889 IF M < -.000000001 THEN 1999

1904 PRINT A(1), A(2), A(3), A(4), M, JJJJ

1999 NEXT JJJJ

This computer program was run with qb64v1000-win [18]. Copied by hand from the screen, the computer program’s complete output through JJJJ=-31918 is shown below:

.5773502691877946          -.5773502691877946          1
1          -4.228800415308903D-12          -31992

-.5773502691866187          -.5773502691866187          1
1          -6.944536525693712D-12          -31985

.5773502691915871          -.5773502691915871          1
1          -4.529397256564094D-12          -31974

.5773502692572973          -.5773502692572973          1
1          -1.562806386579997D-10          -31942

-.5773502691903677          .5773502691903677          1
1          -1.713410663350956D-12          -31939

-.5773502691900816          .5773502691900816          1
1          -1.052680729043964D-12          -31918

Above there is no rounding by hand; it is just straight copying by hand from the screen.

On a personal computer using a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and using qb64v1000-win [18], the wall-clock time for obtaining the output through JJJJ= -31918 was 11 seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), pages 11376-11387.

[2] J. L. Brenner, Lorraine L. Foster (1982), Exponential Diophantine Equations. Pacific Journal of Mathematics, Volume 101, Number 2, 1982, Pages 263-301.

[3] I.M.M. El-Emary, M.M.Abd El-Kareem, Towards Using Genetic Algorithmfor Solving Nonlinear Equation System. World Applied Sciences Journal 5 (3):282-289, 2008.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.388.158&rep=rep1&type=pdf

[4] Martin Gardner (1979), Mathematical Games. Scientific American, 241 (3), Page 25.

[5] Martin Gardner (1983), Diophantine Analysis and Fermat’s Last Theorem, Chapter 2 of Wheels, Life and Other Mathematical Amusements. New York, San Francisco: W. H. Freeman and Company (1983). http://www.labeee.ufsc.br/~luis/ga/Gardner.pdf

[6] Angel Fernando Kuri-Morales, Solution of Simultaneous Non-Linear Equations Using Genetic Algorithm. http://www.wseas.us/e-library/conferences/brazil2002/papers/449-158.pdf.

[7] L. J. Lander, T. R. Parkin (1966), Counterexample to Euler’s Conjecture on Sums of Like Powers. The Bulletin of American Mathematical Society, Vol. 72, 1966, page 1079.

[8] L. J. Lander, T. R. Parkin (1967), A Counterexample to Euler’s Sum of Powers Conjecture. Mathematics of Computation, Vol. 21, January 1967, pages 101-103.

[9] L. J. Lander, T. R. Parkin, J. L. Selfridge (1967), A Survey of Equal Sums of Like Powers. Mathematics of Computation, Vol. 21, July 1967, pages 446-459.

[10] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[11] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[12] Tito Piezas III, Euler Bricks and Quadruples. http://sites.google.com/site/tpiezas/0021

[13] Anton Schigur, Solving a System of Diophantine Equations. Mathematics Stack Exchange. http://math.stackexchange.com/questions/398364/solving-a-system-of-diophantine-equations.

[14] W. Sierpinski, A Selection of Problems in the Theory of Numbers. New York: The McMillan Company, 1964.

[15] E.K. Virtanen (2008-05-26). “Interview With Galleon”.
http://www.basicprogramming.org/PCOPY!issue70/#galleoninterview.

[16] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematical Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

[17] Wikipedia, Euler Brick. en.wikipedia.org/wiki/Euler_brick.

[18] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64.

[19] Jsun Yui Wong (2014, February 8), Testing the Nonlinear Integer Programming Solver with Lander and Parkin’s Counterexample to Euler’s Conjecture on Sums of Like Powers. https://computerprogramsandresults.wordpress.com/2014/02/08/testing.