A Computer Program Solving a System of Nonlinear Diophantine Equations

Jsun Yui Wong

The computer program listed below seeks to solve a system of nonlinear Diophantine equations based on the following system:

“a^3+40033=d
b^3+39312=d
c^3+4104=d
where a, b, c>0 are all Distinct postive integers, …” Schigur [11, http://math.stackexchange.com/questions/398364/solving-a-system-of-diophantine-equations%5D.
0 DEFDBL A-Z
1 DEFINT J, K
2 DIM B(99), N(99), A(2002), H(99), L(99), U(99), X(2002), D(111), P(111), PS(33), J(99), AA(99), HR(32), HHR(32), PLHS(44), LB(22), UB(22), PX(44), J44(44), PN(22), NN(22)
88 FOR JJJJ = -32000 TO 32000
89 RANDOMIZE JJJJ
90 M = -3D+30
111 FOR J44 = 1 TO 4
112 A(J44) = 1 + FIX(RND * 30)

113 NEXT J44
128 FOR I = 1 TO 100

129 FOR KKQQ = 1 TO 4
130 X(KKQQ) = A(KKQQ)
131 NEXT KKQQ
139 FOR IPP = 1 TO FIX(1 + RND * 3)
140 B = 1 + FIX(RND * 4)

150 REM R = (1 – RND * 2) * A(B)

155 REM IF RND < .5 THEN 160 ELSE GOTO 167

160 REM X(B) = (A(B) + RND ^ 3 * R)

165 REM GOTO 168

167 IF RND < .5 THEN X(B) = (A(B) – 1) ELSE X(B) = (A(B) + 1)

168 NEXT IPP
185 FOR J44 = 1 TO 4
187 IF X(J44) < 1 GOTO 1670

188 NEXT J44
195 X(4) = X(1) ^ 3 + 40033

215 N(7) = -ABS(X(2) ^ 3 + 39312 – X(4))
217 N(8) = -ABS(X(3) ^ 3 + 4104 – X(4))

322 PD1 = N(7) + N(8)

1111 IF PD1 <= M THEN 1670
1452 M = PD1
1454 FOR KLX = 1 TO 4
1455 A(KLX) = X(KLX)

1456 NEXT KLX
1557 GOTO 128
1670 NEXT I

1889 IF M < -50 THEN 1999

1904 PRINT A(1), A(2), A(3), A(4)
1905 PRINT M, JJJJ
1999 NEXT JJJJ

This computer program was run with qb64v1000-win [16]. Copied by hand from the screen, the computer program’s complete output through JJJJ=-31991 is shown below:

2       9       33       40041
0       -32000

15       16       34       43408
0       -31999

2       9       33       40041
0       -31997

15       16       34       43408
0       -31996

2       9       33       40041
0       -31994

2       9       33       40041
0       -31993

15       16       34       43408
0       -31992

2       9       33      40041
0       -31991

Above there is no rounding by hand; it is just straight copying by hand from the screen.

The two solutions shown above are the same two solutions shown by “coffeemath” in [11].

On a personal computer using a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM and using qb64v1000-win [16], the wall-clock time for obtaining the output through JJJJ= -31998 was 3 seconds, not including “Creating .EXE file…” time–the total time was 11 seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), pages 11376-11387.

[2] J. L. Brenner, Lorraine L. Foster (1982), Exponential Diophantine Equations. Pacific Journal of Mathematics, Volume 101, Number 2, 1982, Pages 263-301.

[3] Martin Gardner (1979), Mathematical Games. Scientific American, 241 (3), Page 25.

[4] Martin Gardner (1983), Diophantine Analysis and Fermat’s Last Theorem, Chapter 2 of Wheels, Life and Other Mathematical Amusements. New York, San Francisco: W. H. Freeman and Company (1983). http://www.labeee.ufsc.br/~luis/ga/Gardner.pdf

[5] L. J. Lander, T. R. Parkin (1966), Counterexample to Euler’s Conjecture on Sums of Like Powers. The Bulletin of American Mathematical Society, Vol. 72, 1966, page 1079.

[6] L. J. Lander, T. R. Parkin (1967), A Counterexample to Euler’s Sum of Powers Conjecture. Mathematics of Computation, Vol. 21, January 1967, pages 101-103.

[7] L. J. Lander, T. R. Parkin, J. L. Selfridge (1967), A Survey of Equal Sums of Like Powers. Mathematics of Computation, Vol. 21, July 1967, pages 446-459.

[8] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[9] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[10] Tito Piezas III, Euler Bricks and Quadruples. http://sites.google.com/site/tpiezas/0021

[11] Anton Schigur, Solving a System of Diophantine Equations. Mathematics Stack Exchange. http://math.stackexchange.com/questions/398364/solving-a-system-of-diophantine-equations.

[12] W. Sierpinski, A Selection of Problems in the Theory of Numbers. New York: The McMillan Company, 1964.

[13] E.K. Virtanen (2008-05-26). “Interview With Galleon”.
http://www.basicprogramming.org/PCOPY!issue70/#galleoninterview

[14] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematical Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

[15] Wikipedia, Euler Brick. en.wikipedia.org/wiki/Euler_brick

[16] Wikipedia, QB64, https://en.wikipedia.org/wiki/QB64

[17] Jsun Yui Wong (2014, February 8), Testing the Nonlinear Integer Programming Solver with Lander and Parkin’s Counterexample to Euler’s Conjecture on Sums of Like Powers. https://computerprogramsandresults.wordpress.com/2014/02/08/testing