A Unified Computer Program Solving Li and Sun’s Problem 14.4 Plus Two Additional Constraints, Including X(1)^3+X(2)^3+X(3)^3+…+X(2000)^3 = 2000, and with 2000 Unknowns instead of 100 Unknowns

Jsun Yui Wong

Similar to the computer programs of the preceding papers, the computer program below seeks to solve Li and Sun’s Problem 14.4 plus two additional constraintsand with 2000 unknowns instead of 100 unknowns; see Li and Sun [10, p. 415]. Specifically the computer program below tries to minimize the following:

2000-1
SIGMA [ 100* ( X(i+1) – X(i)^2 )^2 + ( 1-X(i) )^2 ]
i=1

subject to

X(1)^3+X(2)^3+X(3)^3+…+X(2000)^3 = 2000

X(1)+X(2)+X(3)+…+X(2000) <= 2000

-5<=X(i)<=5, X(i) integer, i=1, 2, 3,…, 2000.

One notes line 114, line 174, and line 175, which are as follows:
114 A(J44)=-1+FIX(RND*3)
174 IF X(J44)>5 THEN X(J44 )=A(J44 )
175 IF X(J44)<-5 THEN X(J44 )=A(J44 ).

One also notes line 191, which is 191 X(1)= ( 2000 -(SUMY) )^(1/3).

While line 114 of the preceding paper is 114 A(J44 )=-5+FIX( RND*11), line 114 here is
114 A(J44)=-1+FIX(RND*3).

While line 128 of the preceding paper is 128 FOR I=1 TO 32000 STEP .5, line 128 here is
128 FOR I=1 TO 32000 STEP .1.

The objective function here is based on the Rosenbrock function [10, p. 415].

0 REM DEFDBL A-Z
1 DEFINT J,K,B,X
2 DIM A(10001),X(10001)
81 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-1.5D+38
111 FOR J44=1 TO 2000
114 A(J44)=-1+FIX(RND*3)
117 NEXT J44
128 FOR I=1 TO 32000 STEP .1
129 FOR KKQQ=1 TO 2000
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*2000)
143 GOTO 167
144 REM GOTO 168
145 IF RND<.5 THEN 150 ELSE 167
150 R=(1-RND*2)*A(B)
160 X(B)=(A(B) +RND^3*R)
162 GOTO 168
163 IF RND<.5 THEN X(B)=(A(B)-.001) ELSE X(B)=(A(B) +.001 )
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1 )
168 REM IF A(B)=0 THEN X(B)=1 ELSE X(B)=0
169 NEXT IPP
171 FOR J44=1 TO 2000
174 IF X(J44)>5 THEN X(J44 )=A(J44 )
175 IF X(J44)<-5 THEN X(J44 )=A(J44 )
177 NEXT J44
180 SUMY=0
183 FOR J44=2 TO 2000
185 SUMY=SUMY+X(J44)^3
187 NEXT J44
189 IF ( 2000 -(SUMY) )<0 THEN 1670
191 X(1)= ( 2000 -(SUMY) )^(1/3)
200 SUMNEW=0
203 FOR J44=1 TO 2000
205 SUMNEW=SUMNEW+X(J44)
207 NEXT J44
255 X(2001)=2000- SUMNEW
303 IF X(2001)<0 THEN X(2001)=X(2001) ELSE X(2001)=0
401 SONE=0
402 FOR J44=1 TO 1999
411 SONE=SONE+ 100* ( X(J44+1) – X(J44)^2 )^2 + ( 1-X(J44) )^2
421 NEXT J44
689 PD1=-SONE +5000000!*X(2001)
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 2001
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1459 REM PRINT A(1),A(10000),A(10001),M,JJJJ
1557 GOTO 128
1670 NEXT I
1889 REM IF M<-10000 THEN 1999
1931 PRINT A(1),A(2),A(3),A(4),A(5)
1936 PRINT A(1996),A(1997),A(1998),A(1999),A(2000)
1939 PRINT M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. See the BASIC manual [11]. Copied by hand from the screen, the computer program’s complete output through JJJJ=-31994 is shown below:

1      1      1      1      1
1      1      1      1      2
-709      -32000

1      1      1      1      1
1      1      1      2      2
-715      -31999

1      1      1      1      1
1      1      1      1      2
-509      -31998

1      1      1      1      1
1      1      1      1      2
-509      -31997

1      1      1      1      1
1      1      1      2      2
-3533      -31996

1      1      1      1      1
1      1      1      1      2
-2725      -31995

1      1      1      1      1
1      1      1      1      1
0      -31994

Above there is no rounding by hand.

M=0 is optimal.  See Li and Sun [10, p. 415].

Of the 2000 A’s, only the 10 A’s of line 1931 and line 1936 are shown above.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31994 was 10 hours.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] E. Balas, An Additive Algorithm for Solving Linear Programs with Zero-One Variables. Operations Research, Vol. 13, No. 4 (1965), pp. 517-548.

[2] E. Balas, Discrete Programming by the Filter Method. Operations Research, Vol. 15, No. 5 (Sep. – Oct., 1967), pp. 915-957.

[3] F. Cajori (1911) Historical Note on the Newton-Raphson Method of Approximation. The American Mathematical Monthly, Volume 18 #2, pp. 29-32.

[4] M. A. Duran, I. E. Grossmann, An Outer-Approximation Algorithm for a Class of Mixed-Integer Nonlinear Programs. Mathematical Programming, 36:307-339, 1986.

[5] D. M. Himmelblau, Applied Nonlinear Programming. New York: McGraw-Hill Book Company, 1972.

[6] W. Hock, K. Schittkowski, Test Examples for Nonlinear Programming Codes. Springer-Verlag, 1981.

[7] Jack Lashover (November 12, 2012). Monte Carlo Marching. http://www.academia.edu/5481312/MONTE_ CARLO_MARCHING

[8] E. L. Lawler, M. D. Bell, A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 14, No. 6 (Nov. – Dec., 1966), pp. 1098-1112.

[9] E. L. Lawler, M. D. Bell, Errata: A Method for Solving Discrete Optimization Problems. Operations Research, Vol. 15, No. 3 (May – June, 1967), p. 578.

[10] Duan Li, Xiaoling Sun, Nonlinear Integer Programming. Springer Science+Business Media,LLC (2006). http://www.books.google.ca/books?isbn=0387329951

[11] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C,Boca Raton, Floridda 33432, 1981.

[12] Harvey M. Salkin, Integer Programming. Menlo Park, California: Addison-Wesley Publishing Company (1975).

[13] Harvey M. Salkin, Kamlesh Mathur, Foundations of Integer Programming. Elsevier Science Ltd (1989).

[14] K. Schittkowski, More Test Examples for Nonlinear Programming Codes. Springer-Verlag, 1987.

[15] S. Surjanovic, Zakharov Function. http://www.sfu.ca/~ssurjano/zakharov.html

[16] Jsun Yui Wong (2012, April 23). The Domino Method of General Integer Nonlinear Programming Applied to Problem 2 of Lawler and Bell. http://computationalresultsfromcomputerprograms.wordpress.com/2012/04/23/

[17] Jsun Yui Wong (2013, September 4). A Nonlinear Integer/Discrete/Continuous Programming Solver Applied to a Literature Problem with Twenty Binary Variables and Three Constraints, Third Edition. http://myblogsubstance.typepad.com/substance/2013/09/

[18] Jsun Yui Wong (2014, June 27). A Unified Computer Program for Schittkowski’s Test Problem 377, Second Edition. http://nonlinearintegerprogrammingsolver.blogspot.ca/2014_06_01_archive.html