The Domino Method Applied to Martin Gardiner’s System of Six Simultaneous Diophantine Equations

Jsun Yui Wong

The computer program listed below seeks to solve simultaneously the following system of six Diophantine equations taken from page 4 of Gardiner [6]:
X(7) = 5*X(1) +1
4*X(1) = 5*X(2) +1
4*X(2) = 5*X(3) +1
4*X(3) = 5*X(4) +1
4*X(4) = 5*X(5) +1
4*X(5) = 5*X(6) +1

0 DEFDBL A-Z
1 DEFINT I,J,K,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99),AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(22)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 7
112 A(J44)=100+ ( RND *20000)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 7
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*7)
140 B=1+FIX(RND*7)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 158 ELSE 167
158 REP= (A(B) +RND^3*R)
159 IF REP>30000 THEN 1670
160 REM X(B)=(A(B) +RND^3*R)
162 X(B)=REP
164 REM IF RND<.5 THEN X(B)=(A(B)-RND*10) ELSE X(B)=(A(B) +RND*10)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
222 REM
231 X(1)= ( X(7)-1#)/5#
232 X(2)= ( 4#* X(1)-1#)/5#
233 X(3)= ( 4#* X(2)-1#)/5#
234 X(4)= ( 4#* X(3)-1#)/5#
235 X(5)= ( 4#* X(4)-1#)/5#
236 X(6)= ( 4#* X(5)-1#)/5#
251 N(1)= ( X(7) -5*X(1) -1#)
252 N(2)= (4#*X(1) -5*X(2) -1#)
253 N(3)= (4#*X(2) -5*X(3) -1#)
254 N(4)= (4#*X(3) -5*X(4) -1#)
255 N(5)= (4#*X(4) -5*X(5) -1#)
256 N(6)= (4#*X(5) -5*X(6) -1#)
257 REM
322 PD1=-ABS(N(1)) -ABS(N(2))-ABS(N(3))-ABS(N(4))-ABS(N(5))-ABS(N(6))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1453 FOR KLX=1 TO 7
1454 NN(KLX)=N(KLX)
1455 A(KLX)=X(KLX)
1556 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 IF M<0 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),M,JJJJ
1908 PRINT NN(1),NN(2),NN(3),NN(4),NN(5),NN(6)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31709 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

3124 2499 1999 1599 1279
1023 15621 0 -31961
0 0 0 0 0
0

3124 2499 1999 1599 1279
1023 15621 0 -31870
0 0 0 0 0
0

3124 2499 1999 1599 1279
1023 15621 0 -31709
0 0 0 0 0
0

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31709 was 13 seconds.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), pages 11376-11387.

[2] J. L. Brenner, Lorraine L. Foster (1982), Exponential Diophantine Equations. Pacific Journal of Mathematics, Volume 101, Number 2, 1982, Pages 263-301.

[3] Martin Gardner (1979), Mathematical Games. Scientific American, 241 (3), Page 25.

[4] Martin Gardner (1979), Mathematical Circus. Knopf (1979).

[5] Martin Gardner (1983), Diophantine Analysis and Fermat’s Last Theorem, Chapter 2 of Wheels, Life and Other Mathematical Amusements. New York, San Francisco: W. H. Freeman and Company (1983). http://www.labeee.ufsc.br/~luis/ga/Gardner.pdf

[6] Martin Gardner (2001), The Colossal Book of Mathematics. New York, London: W. W. Norton and Company (2001).

[7] L. J. Lander, T. R. Parkin (1966), Counterexample to Euler’s Conjecture on Sums of Like Powers. Bulletin of the American Mathematical Society, Vol. 72, 1966, page 1079.

[8] L. J. Lander, T. R. Parkin (1967), A Counterexample to Euler’s Sum of Powers Conjecture. Mathematics of Computation, Vol. 21, January 1967, pages 101-103.

[9] L. J. Lander, T. R. Parkin, J. L. Selfridge (1967), A Survey of Equal Sums of Like Powers. Mathematics of Computation, Vol. 21, July 1967, pages 446-459.

[10] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[11] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[12] Tito Piezas III, Euler Bricks and Quadruples. http://sites.google.com/site/tpiezas/0021

[13] W. Sierpinski, A Selection of Problems in the Theory of Numbers. New York: The McMillan Company, 1964.

[14] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematical Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

[15] Wikipedia, Euler Brick. en.wikipedia.org/wiki/Euler_brick

[16] Jsun Yui Wong (2013, November 26), A Computer Program for Solving Systems of Diophantine Nonlinear Equations, Part 2. Retrieved from http://myblogsubstance.typepad.com/substance/2013/11/index.html.