Testing the Nonlinear Integer Programming Solver with Another System of Nonlinear Diophantine Equations

Jsun Yui Wong

The computer program below seeks to solve simultaneously the following system of four nonlinear Diophantine equations:
X(1)^2+X(2)^2 +X(3)^2 = X(5)^2
X(1)^2+X(3)^2 +X(4)^2 = X(6)^4
X(1)^2+X(2)^2 +X(4)^2 = X(7)^4
X(2)^2+X(3)^2 +X(4)^2 = X(8)^2,
which is a modified version of the following system
X(1)^2-X(2)^2 +X(3)^2 = 113^2
X(1)^2-X(3)^2 +X(4)^2 = 11^4
X(1)^2-X(2)^2 +X(4)^2 = 11^4
X(2)^2-X(3)^2 +X(4)^2 = 132^2
taken from Piezas III [6].
Thus, while the system of the preceding paper is
X(1)^2+X(2)^2 +X(3)^2 = X(5)^2
X(1)^2+X(3)^2 +X(4)^2 = X(6)^2
X(1)^2+X(2)^2 +X(4)^2 = X(7)^2
X(2)^2+X(3)^2 +X(4)^2 = X(8)^2,
the system here is
X(1)^2+X(2)^2 +X(3)^2 = X(5)^2
X(1)^2+X(3)^2 +X(4)^2 = X(6)^4
X(1)^2+X(2)^2 +X(4)^2 = X(7)^4
X(2)^2+X(3)^2 +X(4)^2 = X(8)^2.

Line 192 and line 193 are noteworthy.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99),AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(22)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 8
112 A(J44)=5+ ( RND *200)
113 NEXT J44
128 FOR I=1 TO 3000
129 FOR KKQQ=1 TO 8
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*8)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
164 REM IF RND<.5 THEN X(B)=(A(B)-RND*10) ELSE X(B)=(A(B) +RND*10)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
169 GOTO 185
171 IF X(1)=X(2) THEN 1670
172 IF X(1)=X(3) THEN 1670
173 IF X(2)=X(3) THEN 1670
185 FOR J44=1 TO 8
186 IF X(J44)<1 THEN 1670
187 NEXT J44
191 X(5)= ( +X(1)^2#+X(2)^2# +X(3)^2 ) ^(1#/2#)
192 X(6)= ( +X(1)^2#+X(3)^2# +X(4)^2 ) ^(1#/4#)
193 X(7)= ( +X(1)^2#+X(2)^2# +X(4)^2 ) ^(1#/4#)
194 X(8)= ( +X(2)^2#+X(3)^2# +X(4)^2 ) ^(1#/2#)
204 N(7)= X(5)^2#-X(1)^2#-X(2)^2# -X(3)^2#
205 N(8)= X(6)^4#-X(1)^2#-X(3)^2# -X(4)^2#
206 N(9)= X(7)^4#-X(1)^2#-X(2)^2# -X(4)^2#
207 N(10)= X(8)^2#-X(2)^2#-X(3)^2# -X(4)^2#
322 PD1=-ABS(N(7))-ABS(N(8) )-ABS( N(9) ) -ABS(N(10))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 8
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 IF M<0 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-28542 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

49 72 72 84 113
11 11 132 0 -31584

49 72 72 84 113
11 11 132 0 -28542

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-28542 was 66 minutes.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] J. L. Brenner, Lorraine L. Foster (1982), Exponential Diophantine Equations. Pacific Journal of Mathematics, Volume 101, Number 2, 1982, Pages 263-301.

[3] M. Gardner (1979), Mathematical Games. Scientific American, 241 (3), Page 25.

[4] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[5] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[6] Tito Piezas III, Euler Bricks and Quadruples. http://sites.google.com/site/tpiezas/0021

[7] W. Sierpinski, A Selection of Problems in the Theory of Numbers. New York: The McMillan Company, 1964.

[8] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematical Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

[9] Wikipedia, Euler Brick. en.Wikipedia.org/wiki/Euler_brick.

[10] Jsun Yui Wong (2013, November 26), A Computer Program for Solving Systems of Diophantine Nonlinear Equations, Part 2. Retrieved from http://myblogsubstance.typepad.com/substance/2013/11/index.html.

Errata: Testing the Nonlinear Integer Programming Solver with Euler Quadruples

Jsun Yui Wong

The first paragraph of the preceding paper should read as follows:

The computer program below seeks to solve simultaneously the following system of four nonlinear Diophantine equations from Piezas III [6]:

X(1)^2+X(2)^2 +X(3)^2 = X(5)^2
X(1)^2+X(3)^2 +X(4)^2 = X(6)^2
X(1)^2+X(2)^2 +X(4)^2 = X(7)^2
X(2)^2+X(3)^2 +X(4)^2 = X(8)^2.

Testing the Nonlinear Integer Programming Solver with Euler Quadruples

Jsun Yui Wong

The computer program below seeks to solve simultaneously the following system of four nonlinear Diophantine equations from Piezas III [6].

X(1)^2-X(2)^2 -X(3)^2 = X(5)^2
X(1)^2-X(3)^2 -X(4)^2 = X(6)^2
X(1)^2-X(2)^2 -X(4)^2 = X(7)^2
X(2)^2-X(3)^2 -X(4)^2 = X(8)^2

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99),AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(22)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 8
112 A(J44)=5+ ( RND *200)
113 NEXT J44
128 FOR I=1 TO 3000
129 FOR KKQQ=1 TO 8
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*8)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
164 REM IF RND<.5 THEN X(B)=(A(B)-RND*10) ELSE X(B)=(A(B) +RND*10)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
169 GOTO 185
171 IF X(1)=X(2) THEN 1670
172 IF X(1)=X(3) THEN 1670
173 IF X(2)=X(3) THEN 1670
185 FOR J44=1 TO 8
186 IF X(J44)<1 THEN 1670
187 NEXT J44
191 X(5)= ( +X(1)^2#+X(2)^2# +X(3)^2 ) ^(1#/2#)
192 X(6)= ( +X(1)^2#+X(3)^2# +X(4)^2 ) ^(1#/2#)
193 X(7)= ( +X(1)^2#+X(2)^2# +X(4)^2 ) ^(1#/2#)
194 X(8)= ( +X(2)^2#+X(3)^2# +X(4)^2 ) ^(1#/2#)
204 N(7)= X(5)^2#-X(1)^2#-X(2)^2# -X(3)^2#
205 N(8)= X(6)^2#-X(1)^2#-X(3)^2# -X(4)^2#
206 N(9)= X(7)^2#-X(1)^2#-X(2)^2# -X(4)^2#
207 N(10)= X(8)^2#-X(2)^2#-X(3)^2# -X(4)^2#
322 PD1=-ABS(N(7))-ABS(N(8) )-ABS( N(9) ) -ABS(N(10))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 8
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1557 GOTO 128
1670 NEXT I
1889 IF M<0 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),M,JJJJ
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-27914 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

105 280 60 168 305
207 343 332 0 -30601

72 49 84 72 121
132 113 121 0 -30130

72 72 84 49 132
121 113 121 0 -27914

The last solution shown above (72 72 84 49 132 121 113 121), the smallest Euler quadruple, was found by Kroblewski (2010), according to Piezas III [6].

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-27914 was 55 minutes.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] J. L. Brenner, Lorraine L. Foster (1982), Exponential Diophantine Equations. Pacific Journal of Mathematics, Volume 101, Number 2, 1982, Pages 263-301.

[3] M. Gardner (1979), Mathematical Games. Scientific American, 241 (3), Page 25.

[4] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[5] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[6] Tito Piezas III, Euler Bricks and Quadruples. http://sites.google.com/site/tpiezas/0021

[7] W. Sierpinski, A Selection of Problems in the Theory of Numbers. New York: The McMillan Company, 1964.

[8] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematical Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

[9] Wikipedia, Euler Brick. en.Wikipedia.org/wiki/Euler_brick.

[10] Jsun Yui Wong (2013, November 26), A Computer Program for Solving Systems of Diophantine Nonlinear Equations, Part 2. Retrieved from http://myblogsubstance.typepad.com/substance/2013/11/index.html.