A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations with the Domino Method, Part 6

Jsun Yui Wong

The computer program below seeks to solve simultaneously the system of seventeen Diophantine equations and ten variables taken from page 11381 of Abraham, Sanyal, and Sanglikar [1], from page 252 of Waldschmidt [4], and from page 740, page 744, and page 745 of Perez, Amaya, and Correa [3]. These simultaneous equations are as follows:

X(1)^15 + X(2)^15 = 1088090731
X(2)^14 + X(9)^14 = 268451840
X(1)^13 + X(3)^13 = 1222297448
X(3)^11 + X(10)^11 = 411625181
X(3)^12 + X(8)^12 = 244144721
1+ 5^X(5) = 3^X(6) +3^X(7)
1+3^X(8) = (2^X(5) )*(5 ^X(6))
X(8)^2 +X(5)^2 +X(6)^2 = 3*X(8)*X(5)*X(6)
X(1) -X(3)+2* X(5) -X(7)-X(9) =-3
X(2)+(2* X(4))^2 -6* X(6)- X(8)+2* X(10) = 8
X(1) -3* X(2)+4* X(4) +X(6)-6*X(7)+ X(8)-2*X(9) =-16
5* X(1)+2* X(2)-8* X(4)-3* X(5)+4* X(6)+X(7)-X(9) =23
2* X(1) +(X(2)+3* X(4))^3 + (5*X(7))^2-6* X(8)+X(9)-9* X(10) =31
(2* X(1) + X(2))^2+3*X(3)-10* X(5)-( X(6)+3*X(7))^3- X(8)-6*X(9) =27
3* X(1) +2* X(2)-5*X(3)- X(4)^4-2* X(5) + X(6)+4*X(7)-10* X(8)+8*X(9) = -9
X(1) ^2-2*(X(2)+ X(4))^3 + X(5)-3* X(6)-X(7)+4*X(9) +15* X(10) = -24
3* X(1) -(2* X(2))^2+10*X(3)-9* X(4)+3* X(5) + X(6)-2*X(7)- 8* X(8)+12*X(9)-5* X(10) = -25

The second equation through the fifth equation shown above are modifications of four equations on page 11381 of Abraham, Sanyal, and Sanglikar [1, Table 2]. The sixth equation, 1+ 5^X(5) = 3^X(6) +3^X(7), is a modification of 1+ 5^X(1) = 3^X(2) +3^X(3) from page 744 of Perez, Amaya, and Correa [3, Table 1]. The equation on page 740 of Perez, Amaya, and Correa [3] has been relabelled to become the seventh equation above, and the Markoff equation on page 252 of Waldschmidt [4] has been relabelled to become the eighth equation shown above.

Lines 210, 215, 222, 233, 244, and 441 are noteworthy.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 10
112 A(J44)= ( RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 10
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
201 IF ( +1088090731#-X(1)^15# )<0 THEN 1670
210 X(2)= ( +1088090731#-X(1)^15# )^(1#/15#)
215 X(9)= ( +268451840#-X(2)^14# )^(1#/14#)
222 X(3)= ( +1222297448#-X(1)^13# )^(1#/13#)
233 X(10)= ( +411625181#-X(3)^11# )^(1#/11#)
244 X(8)= ( +244144721#-X(3)^12# )^(1#/12#)
369 FOR J44=1 TO 10
370 IF X(J44)<0 THEN 1670
371 NEXT J44
441 N(21)=1#+ 5#^X(5)-3#^X(6) -3#^X(7)
599 N(37)=1#+3#^X(8)-(2#^X(5) )*(5# ^X(6))
601 N(39)=X(8)^2# +X(5)^2# +X(6)^2# -3#*X(8)*X(5)*X(6)
611 N(41)=3# + X(1) -X(3)+2#* X(5) -X(7)-X(9)
613 N(43)=-8# + X(2)+(2#* X(4))^2# -6#* X(6)- X(8)+2#* X(10)
615 N(45)=16# + X(1) -3#* X(2)+4#* X(4) +X(6)-6#*X(7)+ X(8)-2#*X(9)
617 N(47)= -23# +5#* X(1)+2#* X(2)-8#* X(4)-3#* X(5)+4#* X(6)+X(7)-X(9)
619 N(49)=-31# +2#* X(1) +(X(2)+3#* X(4))^3 + (5#*X(7))^2-6#* X(8)+X(9)-9#* X(10)
621 N(51)=- 27# +(2#* X(1) + X(2))^2#+3#*X(3)-10#* X(5)-( X(6)+3#*X(7))^3#- X(8)-6#*X(9)
623 N(53)=9# +3#* X(1) +2#* X(2)-5#*X(3)- X(4)^4-2#* X(5) + X(6)+4#*X(7)-10#* X(8)+8#*X(9)
625 N(55)=24#+X(1) ^2#-2#*(X(2)+ X(4))^3 + X(5)-3#* X(6)-X(7)+4#*X(9) +15#* X(10)
711 N(69)=25# +3#* X(1) -(2#* X(2))^2+10#*X(3)-9#* X(4)+3#* X(5) + X(6)-2#*X(7)- 8#* X(8)+12#*X(9)-5#* X(10)
922 PD1= -ABS( N(21)) -ABS(N(37)) -ABS(N(39)) -ABS(N(41)) -ABS(N(43)) -ABS(N(45))-ABS(N(47)) -ABS(N(49)) -ABS(N(51)) -ABS(N(53)) -ABS(N(55))-ABS(N(69))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1501 NN(21)=N(21)
1511 NN(37)=N(37)
1513 NN(39)=N(39)
1514 NN(41)=N(41)
1515 NN(43)=N(43)
1516 NN(45)=N(45)
1517 NN(47)=N(47)
1518 NN(49)=N(49)
1519 NN(51)=N(51)
1521 NN(53)=N(53)
1523 NN(55)=N(55)
1524 NN(69)=N(69)
1557 GOTO 128
1670 NEXT I
1889 IF M<-111 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT M,JJJJ
1909 PRINT NN(21),NN(37)
1910 PRINT NN(39),NN(41),NN(43),NN(45),NN(47)
1911 PRINT NN(49),NN(51),NN(53),NN(55),NN(69)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31995 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

3 4 5 0 1
1 1 2 2 6
0 -31999
0 0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31998
0 0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31996
0 0
0 0 0 0 0
0 0 0 0 0

2 4 5 0 1
0 1 2 2 6
-46 -31995
2 8
5 -1 6 -2 -9
-2 1 -4 -2 -4

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31995 was two seconds.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[4] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematics Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations with the Domino Method, Part 5

Jsun Yui Wong

The computer program below seeks to solve simultaneously the system of sixteen Diophantine equations and ten variables taken from page 11381 of Abraham, Sanyal, and Sanglikar [1], from page 252 of Waldschmidt [4], and from page 740 and page 745 of Perez, Amaya, and Correa [3]. These simultaneous equations are as follows:

X(1)^15 + X(2)^15 = 1088090731
X(2)^14 + X(9)^14 = 268451840
X(1)^13 + X(3)^13 = 1222297448
X(3)^11 + X(10)^11 = 411625181
X(3)^12 + X(8)^12 = 244144721
1+3^X(8) = (2^X(5) )*(5 ^X(6))
X(8)^2 +X(5)^2 +X(6)^2 = 3*X(8)*X(5)*X(6)
X(1) -X(3)+2* X(5) -X(7)-X(9) =-3
X(2)+(2* X(4))^2 -6* X(6)- X(8)+2* X(10) = 8
X(1) -3* X(2)+4* X(4) +X(6)-6*X(7)+ X(8)-2*X(9) =-16
5* X(1)+2* X(2)-8* X(4)-3* X(5)+4* X(6)+X(7)-X(9) =23
2* X(1) +(X(2)+3* X(4))^3 + (5*X(7))^2-6* X(8)+X(9)-9* X(10) =31
(2* X(1) + X(2))^2+3*X(3)-10* X(5)-( X(6)+3*X(7))^3- X(8)-6*X(9) =27
3* X(1) +2* X(2)-5*X(3)- X(4)^4-2* X(5) + X(6)+4*X(7)-10* X(8)+8*X(9) = -9
X(1) ^2-2*(X(2)+ X(4))^3 + X(5)-3* X(6)-X(7)+4*X(9) +15* X(10) = -24
3* X(1) -(2* X(2))^2+10*X(3)-9* X(4)+3* X(5) + X(6)-2*X(7)- 8* X(8)+12*X(9)-5* X(10) = -25

The second equation, the third equation, the fourth equation, and the fifth equation shown above are modifications of four equations on page 11381 of Abraham, Sanyal, and Sanglikar [1, Table 2]. The equation on page 740 of Perez, Amaya, and Correa [3] has been relabelled to become the sixth equation above, and the Markoff equation on page 252 of Waldschmidt [4] has been relabelled to become the seventh equation shown above.

Lines 210, 215, 222, 233, and 244 are noteworthy.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 10
112 A(J44)= ( RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 10
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
201 IF ( +1088090731#-X(1)^15# )<0 THEN 1670
210 X(2)= ( +1088090731#-X(1)^15# )^(1#/15#)
215 X(9)= ( +268451840#-X(2)^14# )^(1#/14#)
222 X(3)= ( +1222297448#-X(1)^13# )^(1#/13#)
233 X(10)= ( +411625181#-X(3)^11# )^(1#/11#)
244 X(8)= ( +244144721#-X(3)^12# )^(1#/12#)
369 FOR J44=1 TO 10
370 IF X(J44)<0 THEN 1670
371 NEXT J44
599 N(37)=1#+3#^X(8)-(2#^X(5) )*(5# ^X(6))
601 N(39)=X(8)^2# +X(5)^2# +X(6)^2# -3#*X(8)*X(5)*X(6)
611 N(41)=3# + X(1) -X(3)+2#* X(5) -X(7)-X(9)
613 N(43)=-8# + X(2)+(2#* X(4))^2# -6#* X(6)- X(8)+2#* X(10)
615 N(45)=16# + X(1) -3#* X(2)+4#* X(4) +X(6)-6#*X(7)+ X(8)-2#*X(9)
617 N(47)= -23# +5#* X(1)+2#* X(2)-8#* X(4)-3#* X(5)+4#* X(6)+X(7)-X(9)
619 N(49)=-31# +2#* X(1) +(X(2)+3#* X(4))^3 + (5#*X(7))^2-6#* X(8)+X(9)-9#* X(10)
621 N(51)=- 27# +(2#* X(1) + X(2))^2#+3#*X(3)-10#* X(5)-( X(6)+3#*X(7))^3#- X(8)-6#*X(9)
623 N(53)=9# +3#* X(1) +2#* X(2)-5#*X(3)- X(4)^4-2#* X(5) + X(6)+4#*X(7)-10#* X(8)+8#*X(9)
625 N(55)=24#+X(1) ^2#-2#*(X(2)+ X(4))^3 + X(5)-3#* X(6)-X(7)+4#*X(9) +15#* X(10)
711 N(69)=25# +3#* X(1) -(2#* X(2))^2+10#*X(3)-9#* X(4)+3#* X(5) + X(6)-2#*X(7)- 8#* X(8)+12#*X(9)-5#* X(10)
922 PD1= -ABS(N(37)) -ABS(N(39)) -ABS(N(41)) -ABS(N(43)) -ABS(N(45))-ABS(N(47)) -ABS(N(49)) -ABS(N(51)) -ABS(N(53)) -ABS(N(55))-ABS(N(69))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1511 NN(37)=N(37)
1513 NN(39)=N(39)
1514 NN(41)=N(41)
1515 NN(43)=N(43)
1516 NN(45)=N(45)
1517 NN(47)=N(47)
1518 NN(49)=N(49)
1519 NN(51)=N(51)
1521 NN(53)=N(53)
1523 NN(55)=N(55)
1524 NN(69)=N(69)
1557 GOTO 128
1670 NEXT I
1889 IF M<-1 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT M,JJJJ
1909 PRINT NN(37)
1910 PRINT NN(39),NN(41),NN(43),NN(45),NN(47)
1911 PRINT NN(49),NN(51),NN(53),NN(55),NN(69)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31994 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

3 4 5 0 1
1 1 2 2 6
0 -31999
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31998
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31996
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31995
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31994
0
0 0 0 0 0
0 0 0 0 0

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31994 was two seconds.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[4] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematics Journal, Volume 4, Number1, January-March 2004, Pages 245-305.

A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations with the Domino Method, Part 4

Jsun Yui Wong

The computer program below seeks to solve simultaneously the system of fourteen Diophantine equations and ten variables taken from page 11381 of Abraham, Sanyal, and Sanglikar [1], from page 252 of Waldschmidt [4], and from page 740 and page 745 of Perez, Amaya, and Correa [3]. These simultaneous equations are as follows:

X(1)^15 + X(2)^15 = 1088090731
X(1)^13 + X(3)^13 = 1222297448
X(3)^11 + X(10)^11 = 411625181
1+3^X(8) = (2^X(5) )*(5 ^X(6))
X(8)^2 +X(5)^2 +X(6)^2 = 3*X(8)*X(5)*X(6)
X(1) -X(3)+2* X(5) -X(7)-X(9) =-3
X(2)+(2* X(4))^2 -6* X(6)- X(8)+2* X(10) = 8
X(1) -3* X(2)+4* X(4) +X(6)-6*X(7)+ X(8)-2*X(9) =-16
5* X(1)+2* X(2)-8* X(4)-3* X(5)+4* X(6)+X(7)-X(9) =23
2* X(1) +(X(2)+3* X(4))^3 + (5*X(7))^2-6* X(8)+X(9)-9* X(10) =31
(2* X(1) + X(2))^2+3*X(3)-10* X(5)-( X(6)+3*X(7))^3- X(8)-6*X(9) =27
3* X(1) +2* X(2)-5*X(3)- X(4)^4-2* X(5) + X(6)+4*X(7)-10* X(8)+8*X(9) = -9
X(1) ^2-2*(X(2)+ X(4))^3 + X(5)-3* X(6)-X(7)+4*X(9) +15* X(10) = -24
3* X(1) -(2* X(2))^2+10*X(3)-9* X(4)+3* X(5) + X(6)-2*X(7)- 8* X(8)+12*X(9)-5* X(10) = -25

The second equation and the third equation shown above are modifications of two equations on page 11381 of Abraham, Sanyal, and Sanglikar [1, Table 2]. The equation on page 740 of Perez, Amaya, and Correa [3] has been relabelled to become the fourth equation above, and the Markoff equation on page 252 of Waldschmidt [4] has been relabelled to become the fifth equation shown above.

Lines 210, 222, and 233 are noteworthy.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 10
112 A(J44)= ( RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 10
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
201 IF ( +1088090731#-X(1)^15# )<0 THEN 1670
210 X(2)= ( +1088090731#-X(1)^15# )^(1#/15#)
222 X(3)= ( +1222297448#-X(1)^13# )^(1#/13#)
233 X(10)= ( +411625181#-X(3)^11# )^(1#/11#)
369 FOR J44=1 TO 10
370 IF X(J44)<0 THEN 1670
371 NEXT J44
599 N(37)=1#+3#^X(8)-(2#^X(5) )*(5# ^X(6))
601 N(39)=X(8)^2# +X(5)^2# +X(6)^2# -3#*X(8)*X(5)*X(6)
611 N(41)=3# + X(1) -X(3)+2#* X(5) -X(7)-X(9)
613 N(43)=-8# + X(2)+(2#* X(4))^2# -6#* X(6)- X(8)+2#* X(10)
615 N(45)=16# + X(1) -3#* X(2)+4#* X(4) +X(6)-6#*X(7)+ X(8)-2#*X(9)
617 N(47)= -23# +5#* X(1)+2#* X(2)-8#* X(4)-3#* X(5)+4#* X(6)+X(7)-X(9)
619 N(49)=-31# +2#* X(1) +(X(2)+3#* X(4))^3 + (5#*X(7))^2-6#* X(8)+X(9)-9#* X(10)
621 N(51)=- 27# +(2#* X(1) + X(2))^2#+3#*X(3)-10#* X(5)-( X(6)+3#*X(7))^3#- X(8)-6#*X(9)
623 N(53)=9# +3#* X(1) +2#* X(2)-5#*X(3)- X(4)^4-2#* X(5) + X(6)+4#*X(7)-10#* X(8)+8#*X(9)
625 N(55)=24#+X(1) ^2#-2#*(X(2)+ X(4))^3 + X(5)-3#* X(6)-X(7)+4#*X(9) +15#* X(10)
711 N(69)=25# +3#* X(1) -(2#* X(2))^2+10#*X(3)-9#* X(4)+3#* X(5) + X(6)-2#*X(7)- 8#* X(8)+12#*X(9)-5#* X(10)
922 PD1= -ABS(N(37)) -ABS(N(39)) -ABS(N(41)) -ABS(N(43)) -ABS(N(45))-ABS(N(47)) -ABS(N(49)) -ABS(N(51)) -ABS(N(53)) -ABS(N(55))-ABS(N(69))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1511 NN(37)=N(37)
1513 NN(39)=N(39)
1514 NN(41)=N(41)
1515 NN(43)=N(43)
1516 NN(45)=N(45)
1517 NN(47)=N(47)
1518 NN(49)=N(49)
1519 NN(51)=N(51)
1521 NN(53)=N(53)
1523 NN(55)=N(55)
1524 NN(69)=N(69)
1557 GOTO 128
1670 NEXT I
1889 IF M<-1 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT M,JJJJ
1909 PRINT NN(37)
1910 PRINT NN(39),NN(41),NN(43),NN(45),NN(47)
1911 PRINT NN(49),NN(51),NN(53),NN(55),NN(69)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31985 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

3 4 5 0 1
1 1 2 2 6
0 -31998
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31995
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31989
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31987
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31985
0
0 0 0 0 0
0 0 0 0 0

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31985 was three seconds.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[4] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematics Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations with the Domino Method, Part 3

Jsun Yui Wong

The computer program below seeks to solve simultaneously the system of twelve Diophantine equations and ten variables taken from page 11381 of Abraham, Sanyal, and Sanglikar [1], from page 252 of Waldschmidt [4], and from page 740 and page 745 of Perez, Amaya, and Correa [3]. These simultaneous equations are as follows:

X(1)^15 + X(2)^15)= 1088090731
X(8)^2 +X(5)^2 +X(6)^2 = 3*X(8)*X(5)*X(6)
1+3^X(8) = (2^X(5) )*(5 ^X(6))
X(1) -X(3)+2* X(5) -X(7)-X(9) =-3
X(2)+(2* X(4))^2 -6* X(6)- X(8)+2* X(10) = 8
X(1) -3* X(2)+4* X(4) +X(6)-6*X(7)+ X(8)-2*X(9) =-16
5* X(1)+2* X(2)-8* X(4)-3* X(5)+4* X(6)+X(7)-X(9) =23
2* X(1) +(X(2)+3* X(4))^3 + (5*X(7))^2-6* X(8)+X(9)-9* X(10) =31
(2* X(1) + X(2))^2+3*X(3)-10* X(5)-( X(6)+3*X(7))^3- X(8)-6*X(9) =27
3* X(1) +2* X(2)-5*X(3)- X(4)^4-2* X(5) + X(6)+4*X(7)-10* X(8)+8*X(9) = -9
X(1) ^2-2*(X(2)+ X(4))^3 + X(5)-3* X(6)-X(7)+4*X(9) +15* X(10) = -24
3* X(1) -(2* X(2))^2+10*X(3)-9* X(4)+3* X(5) + X(6)-2*X(7)- 8* X(8)+12*X(9)-5* X(10) = -25

The Markoff equation on page 252 of Waldschmidt [4] has been relabelled to become the second equation shown above; the equation on page 740 of Perez, Amaya, and Correa [3] has been relabelled to become the third equation shown above.

Line 210 is noteworthy.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 10
112 A(J44)= ( RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 10
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
201 IF ( +1088090731#-X(1)^15# )<0 THEN 1670
210 X(2)= ( +1088090731#-X(1)^15# )^(1#/15#)
369 FOR J44=1 TO 10
370 IF X(J44)<0 THEN 1670
371 NEXT J44
599 N(37)=1#+3#^X(8)-(2#^X(5) )*(5# ^X(6))
601 N(39)=X(8)^2# +X(5)^2# +X(6)^2# -3#*X(8)*X(5)*X(6)
611 N(41)=3# + X(1) -X(3)+2#* X(5) -X(7)-X(9)
613 N(43)=-8# + X(2)+(2#* X(4))^2# -6#* X(6)- X(8)+2#* X(10)
615 N(45)=16# + X(1) -3#* X(2)+4#* X(4) +X(6)-6#*X(7)+ X(8)-2#*X(9)
617 N(47)= -23# +5#* X(1)+2#* X(2)-8#* X(4)-3#* X(5)+4#* X(6)+X(7)-X(9)
619 N(49)=-31# +2#* X(1) +(X(2)+3#* X(4))^3 + (5#*X(7))^2-6#* X(8)+X(9)-9#* X(10)
621 N(51)=- 27# +(2#* X(1) + X(2))^2#+3#*X(3)-10#* X(5)-( X(6)+3#*X(7))^3#- X(8)-6#*X(9)
623 N(53)=9# +3#* X(1) +2#* X(2)-5#*X(3)- X(4)^4-2#* X(5) + X(6)+4#*X(7)-10#* X(8)+8#*X(9)
625 N(55)=24#+X(1) ^2#-2#*(X(2)+ X(4))^3 + X(5)-3#* X(6)-X(7)+4#*X(9) +15#* X(10)
711 N(69)=25# +3#* X(1) -(2#* X(2))^2+10#*X(3)-9#* X(4)+3#* X(5) + X(6)-2#*X(7)- 8#* X(8)+12#*X(9)-5#* X(10)
922 PD1= -ABS(N(37)) -ABS(N(39)) -ABS(N(41)) -ABS(N(43)) -ABS(N(45))-ABS(N(47)) -ABS(N(49)) -ABS(N(51)) -ABS(N(53)) -ABS(N(55))-ABS(N(69))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1511 NN(37)=N(37)
1513 NN(39)=N(39)
1514 NN(41)=N(41)
1515 NN(43)=N(43)
1516 NN(45)=N(45)
1517 NN(47)=N(47)
1518 NN(49)=N(49)
1519 NN(51)=N(51)
1521 NN(53)=N(53)
1523 NN(55)=N(55)
1524 NN(69)=N(69)
1557 GOTO 128
1670 NEXT I
1889 IF M<-1 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT M,JJJJ
1909 PRINT NN(37)
1910 PRINT NN(39),NN(41),NN(43),NN(45),NN(47)
1911 PRINT NN(49),NN(51),NN(53),NN(55),NN(69)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31983 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

3 4 5 0 1
1 1 2 2 6
0 -31992
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31990
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31989
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31988
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31987
0
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31983
0
0 0 0 0 0
0 0 0 0 0

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31983 was four seconds.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[4] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematics Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations with the Domino Method, Part 2

Jsun Yui Wong

The computer program below seeks to solve simultaneously the system of eleven Diophantine equations and ten variables taken from page 11381 of Abraham, Sanyal, and Sanglikar [1], from page 252 of Waldschmidt [4], and from page 745 of Perez, Amaya, and Correa [3]. These simultaneous equations are as follows:

X(1)^15 + X(2)^15)= 1088090731
X(8)^2 +X(5)^2 +X(6)^2 = 3*X(8)*X(5)*X(6)
X(1) -X(3)+2* X(5) -X(7)-X(9) =-3
X(2)+(2* X(4))^2 -6* X(6)- X(8)+2* X(10) = 8
X(1) -3* X(2)+4* X(4) +X(6)-6*X(7)+ X(8)-2*X(9) =-16
5* X(1)+2* X(2)-8* X(4)-3* X(5)+4* X(6)+X(7)-X(9) =23
2* X(1) +(X(2)+3* X(4))^3 + (5*X(7))^2-6* X(8)+X(9)-9* X(10) =31
(2* X(1) + X(2))^2+3*X(3)-10* X(5)-( X(6)+3*X(7))^3- X(8)-6*X(9) =27
3* X(1) +2* X(2)-5*X(3)- X(4)^4-2* X(5) + X(6)+4*X(7)-10* X(8)+8*X(9) = -9
X(1) ^2-2*(X(2)+ X(4))^3 + X(5)-3* X(6)-X(7)+4*X(9) +15* X(10) = -24
3* X(1) -(2* X(2))^2+10*X(3)-9* X(4)+3* X(5) + X(6)-2*X(7)- 8* X(8)+12*X(9)-5* X(10) = -25

The Markoff equation on page 252 of Waldschmidt [4] has been relabelled to become the second equation shown above.

Line 210 is noteworthy.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 10
112 A(J44)= ( RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 10
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
201 IF ( +1088090731#-X(1)^15# )<0 THEN 1670
210 X(2)= ( +1088090731#-X(1)^15# )^(1#/15#)
369 FOR J44=1 TO 10
370 IF X(J44)<0 THEN 1670
371 NEXT J44
601 N(39)=X(8)^2# +X(5)^2# +X(6)^2# -3#*X(8)*X(5)*X(6)
611 N(41)=3# + X(1) -X(3)+2#* X(5) -X(7)-X(9)
613 N(43)=-8# + X(2)+(2#* X(4))^2# -6#* X(6)- X(8)+2#* X(10)
615 N(45)=16# + X(1) -3#* X(2)+4#* X(4) +X(6)-6#*X(7)+ X(8)-2#*X(9)
617 N(47)= -23# +5#* X(1)+2#* X(2)-8#* X(4)-3#* X(5)+4#* X(6)+X(7)-X(9)
619 N(49)=-31# +2#* X(1) +(X(2)+3#* X(4))^3 + (5#*X(7))^2-6#* X(8)+X(9)-9#* X(10)
621 N(51)=- 27# +(2#* X(1) + X(2))^2#+3#*X(3)-10#* X(5)-( X(6)+3#*X(7))^3#- X(8)-6#*X(9)
623 N(53)=9# +3#* X(1) +2#* X(2)-5#*X(3)- X(4)^4-2#* X(5) + X(6)+4#*X(7)-10#* X(8)+8#*X(9)
625 N(55)=24#+X(1) ^2#-2#*(X(2)+ X(4))^3 + X(5)-3#* X(6)-X(7)+4#*X(9) +15#* X(10)
711 N(69)=25# +3#* X(1) -(2#* X(2))^2+10#*X(3)-9#* X(4)+3#* X(5) + X(6)-2#*X(7)- 8#* X(8)+12#*X(9)-5#* X(10)
922 PD1= -ABS(N(39)) -ABS(N(41)) -ABS(N(43)) -ABS(N(45))-ABS(N(47)) -ABS(N(49)) -ABS(N(51)) -ABS(N(53)) -ABS(N(55))-ABS(N(69))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1513 NN(39)=N(39)
1514 NN(41)=N(41)
1515 NN(43)=N(43)
1516 NN(45)=N(45)
1517 NN(47)=N(47)
1518 NN(49)=N(49)
1519 NN(51)=N(51)
1521 NN(53)=N(53)
1523 NN(55)=N(55)
1524 NN(69)=N(69)
1557 GOTO 128
1670 NEXT I
1889 IF M<-1 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT M,JJJJ
1910 PRINT NN(39),NN(41),NN(43),NN(45),NN(47)
1911 PRINT NN(49),NN(51),NN(53),NN(55),NN(69)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31929 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

3 4 5 0 1
1 1 2 2 6
0 -31991
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31978
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31972
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31963
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31946
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31933
0 0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31929
0 0 0 0 0
0 0 0 0 0

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31929 was eight seconds.

Acknowledgement

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

[4] Michel Waldschmidt, Open Diophantine Problems. Moscow Mathematics Journal, Volume 4, Number 1, January-March 2004, Pages 245-305.

A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations with the Domino Method

Jsun Yui Wong

The computer program below seeks to solve simultaneously the system of ten Diophantine equations taken from page 11381 of Abraham, Sanyal, and Sanglikar [1] and from page 745 of Perez, Amaya, and Correa [3]. These simultaneous equations are as follows:

X(1)^15 + X(2)^15)= 1088090731
X(1) -X(3)+2* X(5) -X(7)-X(9) =-3
X(2)+(2* X(4))^2 -6* X(6)- X(8)+2* X(10) = 8
X(1) -3* X(2)+4* X(4) +X(6)-6*X(7)+ X(8)-2*X(9) =-16
5* X(1)+2* X(2)-8* X(4)-3* X(5)+4* X(6)+X(7)-X(9) =23
2* X(1) +(X(2)+3* X(4))^3 + (5*X(7))^2-6* X(8)+X(9)-9* X(10) =31
(2* X(1) + X(2))^2+3*X(3)-10* X(5)-( X(6)+3*X(7))^3- X(8)-6*X(9) =27
3* X(1) +2* X(2)-5*X(3)- X(4)^4-2* X(5) + X(6)+4*X(7)-10* X(8)+8*X(9) = -9
X(1) ^2-2*(X(2)+ X(4))^3 + X(5)-3* X(6)-X(7)+4*X(9) +15* X(10) = -24
3* X(1) -(2* X(2))^2+10*X(3)-9* X(4)+3* X(5) + X(6)-2*X(7)- 8* X(8)+12*X(9)-5* X(10) = -25

Line 210 is noteworthy.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 10
112 A(J44)= ( RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 10
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10)
150 R=(1-RND*2)*A(B)
155 IF RND<.5 THEN 160 ELSE 167
160 X(B)=(A(B) +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B) +1)
168 NEXT IPP
201 IF ( +1088090731#-X(1)^15# )<0 THEN 1670
210 X(2)= ( +1088090731#-X(1)^15# )^(1#/15#)
369 FOR J44=1 TO 10
370 IF X(J44)<0 THEN 1670
371 NEXT J44
611 N(41)=3# + X(1) -X(3)+2#* X(5) -X(7)-X(9)
613 N(43)=-8# + X(2)+(2#* X(4))^2# -6#* X(6)- X(8)+2#* X(10)
615 N(45)=16# + X(1) -3#* X(2)+4#* X(4) +X(6)-6#*X(7)+ X(8)-2#*X(9)
617 N(47)= -23# +5#* X(1)+2#* X(2)-8#* X(4)-3#* X(5)+4#* X(6)+X(7)-X(9)
619 N(49)=-31# +2#* X(1) +(X(2)+3#* X(4))^3 + (5#*X(7))^2-6#* X(8)+X(9)-9#* X(10)
621 N(51)=- 27# +(2#* X(1) + X(2))^2#+3#*X(3)-10#* X(5)-( X(6)+3#*X(7))^3#- X(8)-6#*X(9)
623 N(53)=9# +3#* X(1) +2#* X(2)-5#*X(3)- X(4)^4-2#* X(5) + X(6)+4#*X(7)-10#* X(8)+8#*X(9)
625 N(55)=24#+X(1) ^2#-2#*(X(2)+ X(4))^3 + X(5)-3#* X(6)-X(7)+4#*X(9) +15#* X(10)
711 N(69)=25# +3#* X(1) -(2#* X(2))^2+10#*X(3)-9#* X(4)+3#* X(5) + X(6)-2#*X(7)- 8#* X(8)+12#*X(9)-5#* X(10)
922 PD1= -ABS(N(41)) -ABS(N(43)) -ABS(N(45))-ABS(N(47)) -ABS(N(49)) -ABS(N(51)) -ABS(N(53)) -ABS(N(55))-ABS(N(69))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1514 NN(41)=N(41)
1515 NN(43)=N(43)
1516 NN(45)=N(45)
1517 NN(47)=N(47)
1518 NN(49)=N(49)
1519 NN(51)=N(51)
1521 NN(53)=N(53)
1523 NN(55)=N(55)
1524 NN(69)=N(69)
1557 GOTO 128
1670 NEXT I
1889 IF M<-1 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT M,JJJJ
1910 PRINT NN(41),NN(43),NN(45),NN(47)
1911 PRINT NN(49),NN(51),NN(53),NN(55),NN(69)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS. The complete output through JJJJ=-31722 is shown below. What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

3 4 5 0 1
1 1 2 2 6
0 -31939
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31895
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31871
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31841
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31821
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31813
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31789
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31783
0 0 0 0
0 0 0 0 0

3 4 5 0 1
1 1 2 2 6
0 -31722
0 0 0 0
0 0 0 0 0.

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11, the wall-clock time for obtaining the output through JJJJ=-31722 was 27 seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.

References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization. Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013), Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm. Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

 

A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations, Part 2

Jsun Yui Wong

The computer program below seeks to solve simultaneously the system of eight equations taken from page 11381 of Abraham, Sanyal, and Sanglikar [1] and from page 741 of Perez, Amaya, and Correa [3].  These simultaneous equations are as follows:

X(1)^6     +   X(2) ^6   =   47385
3* X(1)  +18*   X(3)-5*    X(5)+17* X(6)   = 153
X(2) – 5*   X(3)+  3*  X(5)  –       X(6)   )=   -4 
6* X(1)      +      X(3)-99*X(2) +(15*X(6))^2   = 1772
5* X(1)   +10*  X(2)-5*X(3)  +   X(5)  ^3+8*X(6)   =   1772
–   X(1)    +5*   X(2) +8*X(3)-6* X(4)  +15*X(5)+10*X(6)   =  277
(   X(1) +   X(2)   )^2-7*X(3)+5* X(4)+12* X(5)-8*X(6)   = 150
X(1)^2      +   X(2) ^2+   X(3)^2+    X(4)^2  +   X(5)  ^2+   X(6)^2+  X(7)^2    +      X(8)^2 +   X(9)^2    + X(10) ^2  +X(11)^2   =    1502

One notes that the last equation above is different from the last equation of the preceding paper.

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 11
112 A(J44)=  (  RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 11
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*11)
150    R=(1-RND*2)*A(B)
155 IF RND<.5                  THEN         160 ELSE 167
160 X(B)=(A(B)     +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B)     +1)
168 NEXT IPP
169 FOR J44=1 TO 11
170 IF X(J44)<0 THEN 1670
171 NEXT J44
401  N(2)=-47385#+  X(1)^6#     +   X(2) ^6#
411 N(81)= -153#+3#* X(1)  +18#*   X(3)-5#*    X(5)+17#* X(6)
413 N(83)= 4#     +      X(2) – 5#*   X(3)+  3#*  X(5)  –       X(6)
415 N(85)= -1772#+6#* X(1)      +      X(3)-99#*X(2) +(15#*X(6))^2
417 N(87)=-1772#+5#* X(1)   +10#*  X(2)-5#*X(3)  +   X(5)  ^3+8#*X(6)
419 N(89)=  -277#-   X(1)    +5#*   X(2) +8#*X(3)-6#* X(4)  +15#*X(5)+10#*X(6)
421 N(91)= -150#+(   X(1) +   X(2)   )^2-7#*X(3)+5#* X(4)+12#* X(5)-8#*X(6)
892   N(11)=-1502# +  X(1)^2      +   X(2) ^2+   X(3)^2+    X(4)^2  +   X(5)  ^2+   X(6)^2+  X(7)^2    +      X(8)^2 +   X(9)^2    + X(10) ^2  +X(11)^2
922 PD1=-ABS(N(11)) -ABS(N(2)) -ABS(N(81)) -ABS(N(83))        -ABS(N(85))-ABS(N(87))           -ABS(N(89))     -ABS(N(91))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 11
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1511 NN(11)=N(11)
1512 NN(2)=N(2)
1514 NN(81)=N(81)
1515 NN(83)=N(83)
1516 NN(85)=N(85)
1517 NN(87)=N(87)
1518 NN(89)=N(89)
1519 NN(91)=N(91)
1557 GOTO 128
1670 NEXT I
1889  IF M<-1 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT A(11),M,JJJJ
1910 PRINT NN(11),NN(2),NN(81),NN(83)
1911 PRINT NN(85),NN(87),NN(89),NN(91)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS.  The complete output through JJJJ=-31981 is shown below.  What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

6   3   8   1   12
3   23   21   6   15
3   -1   -32000
1   0   0   0
0   0   0   0

6   3   8   1   12
3   11   26   16   13
4   -1   -31998
-1   0   0   0
0   0   0   0

6   3   8   1   12
3   19   13   23   9
10   -1   -31992
1   0   0   0
0   0   0   0

6   3   8   1   12
3   18   12   20   3
19   -1   -31983
-1   0   0   0
0   0   0   0

6   3   8   1   12
3   32   3   13   1
6   0   -31981
0   0   0   0
0   0   0   0

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31981 was four seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.
 
References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization.  Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013),  Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm.  Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.

A Computer Program for Finding Integer Solutions of Nonlinear Systems of Simultaneous Equations

The computer program below seeks to solve simultaneously the system of eight equations taken from page 11381 of Abraham, Sanyal, and Sanglikar [1] and from page 741 of Perez, Amaya, and Correa [3].  These simultaneous equations are as follows:

X(1)^6     +   X(2) ^6   =   47385
3* X(1)  +18*   X(3)-5*    X(5)+17* X(6)   = 153
X(2) – 5*   X(3)+  3*  X(5)  –       X(6)   )=   -4 
6* X(1)      +      X(3)-99*X(2) +(15*X(6))^2   = 1772
5* X(1)   +10*  X(2)-5*X(3)  +   X(5)  ^3+8*X(6)   =   1772
–   X(1)    +5*   X(2) +8*X(3)-6* X(4)  +15*X(5)+10*X(6)   =  277
(   X(1) +   X(2)   )^2-7*X(3)+5* X(4)+12* X(5)-8*X(6)   = 150
X(1)^2      +   X(2) ^2+   X(3)^2+    X(4)^2  +   X(5)  ^2+   X(6)^2+  X(7)^2    +      X(8)^2 +   X(9)^2    + X(10) ^2    =   956

0 DEFDBL A-Z
1 DEFINT I,J,K,A,X
2 DIM B(99),N(99),A(2002),H(99),L(99),U(99),X(2002),D(111),P(111),PS(33),J(99)
5 DIM AA(99),HR(32),HHR(32),PLHS(44),LB(22),UB(22),PX(44),J44(44),PN(22),NN(99)
88 FOR JJJJ=-32000 TO 32000
89 RANDOMIZE JJJJ
90 M=-3D+30
111 FOR J44=1 TO 10
112 A(J44)=  (  RND *20)
113 NEXT J44
128 FOR I=1 TO 500
129 FOR KKQQ=1 TO 10
130 X(KKQQ)=A(KKQQ)
131 NEXT KKQQ
139 FOR IPP=1 TO FIX(1+RND*3)
140 B=1+FIX(RND*10)
150    R=(1-RND*2)*A(B)
155 IF RND<.5                  THEN         160 ELSE 167
160 X(B)=(A(B)     +RND^3*R)
165 GOTO 168
167 IF RND<.5 THEN X(B)=CINT(A(B)-1) ELSE X(B)=CINT(A(B)     +1)
168 NEXT IPP
169 FOR J44=1 TO 10
170 IF X(J44)<0 THEN 1670
171 NEXT J44
401  N(2)=-47385#+  X(1)^6#     +   X(2) ^6#
411 N(81)= -153#+3#* X(1)  +18#*   X(3)-5#*    X(5)+17#* X(6)
413 N(83)= 4#     +      X(2) – 5#*   X(3)+  3#*  X(5)  –       X(6)
415 N(85)= -1772#+6#* X(1)      +      X(3)-99#*X(2) +(15#*X(6))^2
417 N(87)=-1772#+5#* X(1)   +10#*  X(2)-5#*X(3)  +   X(5)  ^3+8#*X(6)
419 N(89)=  -277#-   X(1)    +5#*   X(2) +8#*X(3)-6#* X(4)  +15#*X(5)+10#*X(6)
421 N(91)= -150#+(   X(1) +   X(2)   )^2-7#*X(3)+5#* X(4)+12#* X(5)-8#*X(6)
892   N(10)= -956# +  X(1)^2      +   X(2) ^2+   X(3)^2+    X(4)^2  +   X(5)  ^2+   X(6)^2+  X(7)^2    +      X(8)^2 +   X(9)^2    + X(10) ^2
922 PD1=-ABS(N(10)) -ABS(N(2)) -ABS(N(81)) -ABS(N(83))        -ABS(N(85))-ABS(N(87))           -ABS(N(89))     -ABS(N(91))
1111 IF PD1<=M THEN 1670
1452 M=PD1
1454 FOR KLX=1 TO 10
1455 A(KLX)=X(KLX)
1456 NEXT KLX
1511 NN(10)=N(10)
1512 NN(2)=N(2)
1514 NN(81)=N(81)
1515 NN(83)=N(83)
1516 NN(85)=N(85)
1517 NN(87)=N(87)
1518 NN(89)=N(89)
1519 NN(91)=N(91)
1557 GOTO 128
1670 NEXT I
1889  IF M<-1 THEN 1999
1904 PRINT A(1),A(2),A(3),A(4),A(5)
1905 PRINT A(6),A(7),A(8),A(9),A(10)
1906 PRINT M,JJJJ
1910 PRINT NN(10),NN(2),NN(81),NN(83)
1911 PRINT NN(85),NN(87),NN(89),NN(91)
1999 NEXT JJJJ

This BASIC computer program was run via basica/D of Microsoft’s GW-BASIC 3.11 interpreter for DOS.  The complete output through JJJJ=-31994 is shown below.  What follows is a hand copy from the computer-monitor screen; immediately below there is no rounding by hand.

6   3   8   1   12
3   20   13   11   2
-1   -32000
1   0   0   0
0   0   0   0

6   3   8   1   12
3   15   6   17   12
-1   -31996
1   0   0   0
0   0   0   0

6   3   8   1   12
3   5   15   9   19
-1   -31995
-1   0   0   0
0   0   0   0

6   3   8   1   12
3   4   15   16   14
0   -31994
0   0   0   0
0   0   0   0

On a personal computer with a Pentium Dual-Core CPU E5200 @2.50GHz, 2.50 GHz, 960 MB of RAM, and the IBM basica/D interpreter, version GW BASIC 3.11,  the wall-clock time for obtaining the output through JJJJ=-31994 was two seconds.

Acknowledgment

I would like to acknowledge the encouragement of Roberta Clark and Tom Clark.
 
References

[1] S. Abraham, S. Sanyal, M. Sanglikar (2013), Finding Numerical Solutions of Diophantine Equations Using Ant Colony Optimization.  Applied Mathematics and Computation 219 (2013), Pages 11376-11387.

[2] Microsoft Corp., BASIC, Second Edition (May 1982), Version 1.10. Boca Raton, Florida: IBM Corp., Personal Computer, P. O. Box 1328-C, Boca Raton, Florida 33432, 1981.

[3] O. Perez, I. Amaya, R. Correa (2013),  Numerical Solution of Certain Exponential and Non-linear Diophantine Systems of Equations by Using a Discrete Particles Swarm Optimization Algorithm.  Applied Mathematics and Computation, Volume 225, 1 December 2013, Pages 737-746.